
Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

 Winter 2013 – Basic Stamp Multi Sensor Data Logging

Introduction

This project has been the most challenging task I have taken on, in regards to Basic Stamp system design. It

required a full understanding of the platform and the interactions with peripheral devices. At times I was faced with

the nagging question, “is this really possible”? My initial view of the project was what the entire system would

ultimately do. However, during the two months of work, it became clear that this was a discipline of component

development and their interactions with one another.

The project that I submitted would be a system that would retrieve data from six sensors. Then the system would

store the data to an external high capacity memory device. The idea of using the Basic Stamp module for this task is

a challenge due to resources constraints. The system is limited to 16Kbits of program memory and 256bits of

variable RAM. Design considerations were crucial to getting all the components to work together.

The Multi Sensor Logger was used to monitor and store the environmental conditions of a bicycle trailer. The

system usage requirements are, but not limited to:

 Reliability in a high vibration environment.

 Resistance or protection from temperature and moisture.

 Stabilized mounting of hardware to mobile platform.

 Ease of setup, operation, monitoring, and removal of system.

The system is operator initiated through the use of a control switch. The system makes use of all 16 I/O pins from

the Board Of Education. It collects data from the following sensors:

 Tilt Sensor for tracking vibration, angle, and motion.

 Ultrasonic Sonar Sensor for detecting objects in range.

 Magnetic Compass Sensor to track bearing and to detect magnetic interferences.

 Speedometer Reed Sensor to track motion and distance.

 Temperature Sensor to record air temperature of environment.

 Voltage Level Sensor to record system voltage use during entire data logging process.

The sensor data is collected at 3 set time intervals, these are as follows:

 250 msec intervals for Tilt and Sonar readings.

 1.5 sec intervals for Compass and Speed readings.

 10 sec intervals for Temperature and Voltage readings.

As the data is polled from the sensors, the results are stored to the external 512Kbit EEPROM. The EEPROM

addresses are counted during each pass so data can be correctly stored. In addition, the task of tracking memory

usage is derived from the pass count. The memory usage is displayed on a LCD to allow the operator to view

progress.

Project Object Code

Below is the code used to detect sensor data based on time intervals and write that data values to EEPROM. Care

was taken to segment each task into a logical group. The objective was to make reading and modifying the code

easier.

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

' -----[Title]---
'
' File....... MulitSensor_Logging_Final.bs2
' Purpose.... Winter 2013 Paper - Records Sensor Readings at set times to memory and display
space usage
' Author..... Patrick Gilfeather, OrangeLine Solutions
' E-mail..... patrick@orangelinesolutions.com
' Updated.... 8 APR 2013
'
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]---
sign VAR Bit ' Memsic Sign bit
I2C_LSB VAR Bit ' Compass Variables for I2C LSB
i2cAck VAR Bit ' Ack bit from device
MSec VAR Nib ' Median Second Counter
LSec VAR Nib ' Long Second Counter
devNum VAR Nib ' device number (0 - 7)
addrLen VAR Nib ' 0, 1 or 2
Ssec VAR Byte ' Short Second Counter
I2C_VAL VAR Byte ' Compass Variables for I2C VAL
I2C_REG VAR Byte ' Compass Variables for I2C REG
Recycle3 VAR Byte ' Multi re-use Byte Variable
Recycle4 VAR Byte ' Multi re-use Byte Variable
Recycle5 VAR Byte ' Multi re-use Byte Variable
outVal VAR Byte
inVal VAR Byte
slvAddr VAR Byte ' slave address
RPM VAR Byte
z VAR Word ' Compass z-axis measurement
Recycle1 VAR Word ' Multi re-use Word Variable
Recycle2 VAR Word ' Multi re-use Word Variable
RSWTime VAR Word
devAddr VAR Word ' address in device

ADC_CS PIN 0 ' Temperature ADC Chip Select pin P0
ADC_Clk PIN 1 ' Temperature ADC Clock pin P1
ADC_Dout PIN 2 ' Temperature ADC Data output pin P2
VoltPin PIN 3 ' Voltmeter RCTime pin P3
pMaxEnable PIN 4 ' Ultra Sonic Range enable pin P4
pMaxPWM PIN 5 ' Ultra Sonic Range PWM pin P5
XAxis PIN 6 ' Memsic X Axis of tilt to pin P6
YAxis PIN 7 ' Memsic Y Axis of tilt to pin P7
SDA PIN 8 ' Compass SDA of gyro to pin P8
SCL PIN 9 ' Compass SCL of gyro to pin P9
ReedSwitch PIN 10 ' Speedometer reed sensor on pin P10
mSCL PIN 11 ' I2C serial clock line IC Pin 11
mSDA PIN 12 ' I2C serial data line IC Pin 12
LED PIN 13 ' Green LED on Pin 13
Switch PIN 14 ' Control Switch on Pin 14
LCDPin PIN 15 ' Spark Fun 16x2 LCD on Pin 15

WRITE_Data CON $3C ' Compass Requests Write operation
READ_Data CON $3D ' Compass Requests Read operation
MODE CON $02 ' Compass Mode setting register
X_MSB CON $03 ' Compass X MSB data output register
Cn1 CON 48576 ' Voltmeter first constant
Cn2 CON 8 ' Voltmeter second constant
Line1 CON 0
Line2 CON 64
LCDCls CON 12
Baud CON 84 '+ Inverted 8,N,1 inverted
lcd_cmd CON $FE 'command prefix
lcd_cmd2 CON $7C 'special command prefix
clrLCD CON $01 'Clear entire LCD screen
displayOff CON $08 'Display off
displayOn CON $0C 'Display ON
BackLite10 CON $83 '10% backlight
noCurs CON $0C 'Make cursor invisible
curpos CON $80 'set cursor + position (row 1=0 TO 15, row 2
= 64 TO 79)
scrollRight CON $1C
scrollLeft CON $18
SaveLCDScr CON $0A 'Save Splash screen
Ack CON 0 ' acknowledge bit
Nak CON 1 ' no ack bit
EE24LC32 CON %1010 << 4
LCDBlock CON 255

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

' -----[Initialize] ---
SEROUT LCDPin,Baud,[lcd_cmd, displayOff]
PAUSE 10
SEROUT LCDPin,Baud,[lcd_cmd, displayOn]
PAUSE 10
SEROUT LCDPin,Baud,[lcd_cmd, clrLCD]
PAUSE 10
SEROUT LCDPin,Baud,[lcd_cmd2, BackLite10]
PAUSE 10
SEROUT LCDPin,Baud,[lcd_cmd, curpos + Line1, " Multi-Sensor ", lcd_cmd, curpos + Line2, " Memory
Logger "]
SEROUT LCDPin,Baud,[lcd_cmd2, SaveLCDScr]
PAUSE 3000 ' Allow connection to stabilize
SEROUT LCDPin,Baud,[lcd_cmd, clrLCD]: PAUSE 20 ' Clear LCD
SEROUT LCDPin,Baud,[lcd_cmd, curpos + Line1, " Press to Start ", lcd_cmd, curpos + Line2,
"................"]

Ssec = 0
RSWTime = 0
RPM = 0
devAddr = 0

RCTIME VoltPin,0,Recycle1
LOW VoltPin
Recycle1 = 0

Reset:
 #IF ($stamp >= BS2P) #THEN
 #ERROR "Use I2COUT and I2CIN!"
 #ENDIF

 devNum = 0 ' device address %000
 slvAddr = EE24LC32 | (devNum << 1)
 addrLen = 2

PAUSE 100 ' Power up delay
I2C_REG = MODE ' Set operating mode to continuous
I2C_VAL = $0
GOSUB I2C_Write_Reg

' -----[Start Routine]--
Pushbutton:

Ssec = 0
RSWTime = 0

DO

IF Switch = 1 THEN
 HIGH LED
 Ssec = Ssec + 1
 PAUSE 250
 IF (Ssec > 5) THEN
 FOR RSWTime = 0 TO 25
 RSWTime = RSWTime + 1
 LOW LED
 PAUSE 120
 HIGH LED
 PAUSE 120
 NEXT
 LOW LED
 GOSUB Main
 ENDIF
ELSE
 LOW LED
ENDIF

LOOP

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

' -----[Main Routine]--
Main:

Ssec = 0
RSWTime = 0

DO
 Ssec = Ssec + 5
 RSWTime = RSWTime + 1
 IF (RSWTime > 64000) THEN ' Counter reset to avoid overflow
 RSWTime = 0
 ENDIF
 IF ReedSwitch = 0 THEN
 GOSUB ReedSensor ' Speedometer readings from Reed Sensor
 ENDIF
 IF (Ssec > 240) THEN
 GOSUB UltraSonic ' Distance from MaxBotix Range Finder
 GOSUB Tilt ' Tilt axis from Memsic
 Msec = Msec + 1
 Ssec = 0
 ENDIF
 IF (Msec > 9) THEN
 GOSUB Speedometer ' Speedometer readings from Reed Sensor
 GOSUB Compass ' Magnetic readings from Compass Sensor
 Lsec = Lsec + 1
 Msec = 0
 ENDIF
 IF (Lsec > 5) THEN
 GOSUB Voltage ' Voltage from RCTime Cicuit
 GOSUB Temperature ' Temperature Read ADC 0831
 Lsec = 0
 ENDIF
LOOP

' -----[Sensor Routines]---
UltraSonic:
 'Read and Create Data
 HIGH pMaxEnable
 PULSIN pMaxPWM, 1, Recycle1
 LOW pMaxEnable ' Rcm = ToF / 58 Convert
Time of Flight to cm
 Recycle3 = Recycle1 / 74 ' Convert Time of Flight
to Inches
 'Log Data
 outVal = Recycle3
 GOSUB Logging
RETURN

Tilt:
 'Read and Create Data
 PULSIN XAxis, 1, Recycle1 ' x-axis measurement
 PULSIN YAxis, 1, Recycle2 ' y-axis measurement
 ' Scale and offset x and y-axis values to 0 to 255.
 Recycle3 = (Recycle1 MIN 1890 MAX 3214) - 1890 ** 13500 'Measured scale 3124-1890
 Recycle4 = (Recycle2 MIN 1899 MAX 3130) - 1899 ** 13533 'Measured scale 3130-1899
 'Log Data
 outVal = Recycle3
 GOSUB Logging
 outVal = Recycle4
 GOSUB Logging
RETURN

Compass:
 'Read and Create Data
 GOSUB GetRawReading ' Get raw Compass reading
from I2C
 Recycle3 = Recycle1 + 160 ** 46420
 Recycle4 = Recycle2 + 308 ** 40268
 Recycle5 = z + 650
 'Log Data
 outVal = Recycle3
 GOSUB Logging
 outVal = Recycle4
 GOSUB Logging
 outVal = Recycle5
 GOSUB Logging
RETURN

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Speedometer:
 'Log Data
 outVal = RPM
 GOSUB Logging
RETURN

Temperature:
 'Read and Create Data
 LOW ADC_CS ' Enable chip
 SHIFTIN ADC_Dout, ADC_Clk, MSBPOST,[Recycle3\9] ' Clock in data from ADC
 HIGH ADC_CS ' Disable ADC
 Recycle3 = Recycle3 * 9 / 5 + 32 ' Convert C to F degrees
 Recycle3 = Recycle3 - 27 ' Offset to correct value
 'Log Data
 outVal = Recycle3
 GOSUB Logging
RETURN

Voltage:
 'Read and Create Data
 RCTIME VoltPin,0,Recycle1
 LOW VoltPin
 Recycle3= Cn1 / Recycle1 + Cn2
 'Log Data
 outVal = Recycle3
 GOSUB Logging
RETURN

ReedSensor:
 ' Calcutate Time only
 DO
 Ssec = Ssec + 5
 RSWTime = RSWTime + 1

 IF ReedSwitch = 1 THEN
 RSWTime = 60000 / RSWTime
 RPM = RSWTime / 6
 RSWTime = 0
 RETURN
 ENDIF
 LOOP

' -----[EEPROM Routines]--
Logging:
 IF devAddr > 65535 THEN
 END
 ENDIF

 Recycle3 = outVal
 GOSUB mWrite_Byte
 GOSUB mRead_Byte
 inVal = Recycle3

 SEROUT LCDPin,Baud,[lcd_cmd, clrLCD]
 PAUSE 10
 Recycle5 = devAddr / 655
 SEROUT LCDPin,Baud,[lcd_cmd, curpos + Line1, "Memory = ", DEC Recycle5, "%"]
 SEROUT LCDPin,Baud,[lcd_cmd, curpos + Line2, "Address = ", DEC5 devAddr]

 PAUSE 10

 devAddr = devAddr + 1
RETURN

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

' -----[Compass I2C High Level Functions]---
GetRawReading:
 PAUSE 50 ' Wait for new data

 ' Send request to X MSB register
 GOSUB I2C_Start
 Recycle3 = WRITE_Data
 GOSUB I2C_Write
 Recycle3 = X_MSB
 GOSUB I2C_Write
 GOSUB I2C_Stop

 'Get data from register (6 bytes total, 2 bytes per axis)
 GOSUB I2C_Start
 Recycle3 = READ_Data
 GOSUB I2C_Write

 ' Get X
 GOSUB I2C_Read
 Recycle4 = Recycle3
 GOSUB I2C_ACK
 GOSUB I2C_Read
 GOSUB I2C_ACK
 Recycle1 = (Recycle4 << 8) | Recycle3

 ' Get Z
 GOSUB I2C_Read
 Recycle4 = Recycle3
 GOSUB I2C_ACK
 GOSUB I2C_Read
 GOSUB I2C_ACK
 Z = (Recycle4 << 8) | Recycle3

 ' Get Y
 GOSUB I2C_Read
 Recycle4 = Recycle3
 GOSUB I2C_ACK
 GOSUB I2C_Read
 GOSUB I2C_NACK
 Recycle2 = (Recycle4 << 8) | Recycle3

 GOSUB I2C_Stop
RETURN

' -----[Compass I2C Low Level Functions]---
' Set I2C_REG & I2C_VAL before calling this
I2C_Write_Reg:
 GOSUB I2C_Start
 Recycle3 = WRITE_DATA
 GOSUB I2C_Write
 Recycle3 = I2C_REG
 GOSUB I2C_Write
 Recycle3 = I2C_VAL
 GOSUB I2C_Write
 GOSUB I2C_Stop
RETURN

' Set I2C_REG before calling this, I2C_DATA will have result
I2C_Read_Reg:
 GOSUB I2C_Start
 Recycle3 = WRITE_DATA
 GOSUB I2C_Write
 Recycle3 = I2C_REG
 GOSUB I2C_Write
 GOSUB I2C_Stop
 GOSUB I2C_Start
 Recycle3 = READ_DATA
 GOSUB I2C_Write
 GOSUB I2C_Read
 GOSUB I2C_NACK
 GOSUB I2C_Stop
RETURN

I2C_Start:
 LOW SDA
 LOW SCL
RETURN

I2C_Stop:
 LOW SDA

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

 INPUT SCL
 INPUT SDA
RETURN

I2C_ACK:
 LOW SDA
 INPUT SCL
 LOW SCL
 INPUT SDA
RETURN

I2C_NACK:
 INPUT SDA
 INPUT SCL
 LOW SCL
RETURN

I2C_Read:
 SHIFTIN SDA, SCL, MSBPRE, [Recycle3]
RETURN

I2C_Write:
 I2C_LSB = Recycle3.BIT0
 Recycle3 = Recycle3 / 2
 SHIFTOUT SDA, SCL, MSBFIRST, [Recycle3\7]
 IF I2C_LSB THEN INPUT SDA ELSE LOW SDA
 INPUT SCL
 LOW SCL
 INPUT SDA
 INPUT SCL
 LOW SCL
RETURN

' -----[EEPROM I2C High Level Functions]---
' Random location write
' -- pass device slave address in "slvAddr"
' -- pass address bytes (0, 1 or 2) in "addrLen"
' -- register address passed in "devAddr"
' -- data byte to be written is passed in "i2cData"

mWrite_Byte:
 GOSUB mI2C_Start ' send Start
 Recycle4 = slvAddr & %11111110 ' send slave ID
 GOSUB mI2C_TX_Byte
 IF (i2cAck = Nak) THEN mWrite_Byte ' wait until not busy
 IF (addrLen > 0) THEN
 IF (addrLen = 2) THEN
 Recycle4 = devAddr.BYTE1 ' send word address (1)
 GOSUB mI2C_TX_Byte
 ENDIF
 Recycle4 = devAddr.BYTE0 ' send word address (0)
 GOSUB mI2C_TX_Byte
 ENDIF
 Recycle4 = Recycle3 ' send data
 GOSUB mI2C_TX_Byte
 GOSUB mI2C_Stop
 RETURN

' Random location read
' -- pass device slave address in "slvAddr"
' -- pass address bytes (0, 1 or 2) in "addrLen"
' -- register address passed in "devAddr"
' -- data byte read is returned in "i2cData"

mRead_Byte:
 GOSUB mI2C_Start ' send Start
 IF (addrLen > 0) THEN
 Recycle4 = slvAddr & %11111110 ' send slave ID (write)
 GOSUB mI2C_TX_Byte
 IF (i2cAck = Nak) THEN mRead_Byte ' wait until not busy
 IF (addrLen = 2) THEN
 Recycle4 = devAddr.BYTE1 ' send word address (1)
 GOSUB mI2C_TX_Byte
 ENDIF
 Recycle4 = devAddr.BYTE0 ' send word address (0)
 GOSUB mI2C_TX_Byte
 GOSUB mI2C_Start
 ENDIF
 Recycle4 = slvAddr | %00000001 ' send slave ID (read)
 GOSUB mI2C_TX_Byte

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

 GOSUB mI2C_RX_Byte_Nak
 GOSUB mI2C_Stop
 Recycle3 = Recycle4
 RETURN

' -----[EEPROM I2C Low Level Functions]---
' *** Start Sequence ***

mI2C_Start: ' I2C start bit sequence
 INPUT mSDA
 INPUT mSCL
 LOW mSDA

mClock_Hold:
 DO : LOOP UNTIL (mSCL = 1) ' wait for clock release
 RETURN

' *** Transmit Byte ***

mI2C_TX_Byte:
 SHIFTOUT mSDA, mSCL, MSBFIRST, [Recycle4\8] ' send byte to device
 SHIFTIN mSDA, mSCL, MSBPRE, [i2cAck\1] ' get acknowledge bit
 RETURN

' *** Receive Byte ***

mI2C_RX_Byte_Nak:
 i2cAck = Nak ' no Ack = high
 GOTO mI2C_RX

mI2C_RX_Byte:
 i2cAck = Ack ' Ack = low

mI2C_RX:
 SHIFTIN mSDA, mSCL, MSBPRE, [Recycle4\8] ' get byte from device
 SHIFTOUT mSDA, mSCL, LSBFIRST, [i2cAck\1] ' send ack or nak
 RETURN

' *** Stop Sequence ***

mI2C_Stop: ' I2C stop bit sequence
 LOW mSDA
 INPUT mSCL
 INPUT mSDA
 RETURN

The memory map of the program shows how the limited resources available were used to their full extent. This

recycling of variables was the most effective method to keep RAM usage to a minimum.

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Flow Chart

Below is the flow chart of the operational logic and control of the multi sensor data logger.

Power On

Declarations and

Initializations

Hold Start

Button?

Start Main

Routine

Yes

Main Routine

Reed Sensor

Active?

Gosub

ReedSensor

250ms

Elapsed?

Gosub UltraSonic

and Tilt

Yes

Yes

No

2.5 sec

Elapsed?

No

Gosub Speedo and

Compass

Yes

No

10 sec

Elapsed?

Yes
Gosub Voltage and

Temperature

No

ReedSensor

SubRoutine

Calculate RPM from hi

edge counter

Return to Main

Routine

UltraSonic and Tilt

SubRoutine

Get value from UltraSonic

Sensor and store in Memory

Get value from Tilt Sensor

and store in Memory

Return to Main

Routine

Speedo and

Compass SubRoutine

Get value from RPM and

store in Memory

Get value from Compass

Sensor and store in Memory

Return to Main

Routine

Memory

Space? Yes

End Program

No

Gosub Voltage and

Temperature

Get value from Voltage and

store in Memory

Get value fromTemperature

and store in Memory

Return to Main

Routine

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Theory of Operation

The system will load all the variables, pin assignments, and constants into RAM after powering on. The LCD will

also initialize and display a splash message “Multi Sensor” on the first line and “Memory Logger” on the second

line. After three seconds, the message will clear and the LCD will display a prompt “Push to Start”. Some initial

variables will be set to zero and the memory will be initialized.

From this point, the system enters into a loop which will depend on the push button state. If the push button is

pressed, a LED will turn on to indicate user input. This was needed to know if the system was ready and responding

to input. If the push button is held for more than 1.5 seconds, the loop is broken. This is indicated by a series of

flashes on the LED.

The system now enters the Main routine loop of the program. There are five conditions in the main routine. The

first is a time counter housekeeping function, which prevents overflow of the counter variable. The second is the

reed sensor state, which is triggered when the reed sensor is active. The last three are time functions that are

triggered based on the time counters, which reset after firing.

In the time counter housekeeping function, the counter value is reset to zero when it reaches a value in excess of

64000. This ensures that the WORD variable does not overflow. When the counter value is reset, it simply

continues on with the Main routine loop.

The reed sensor function breaks the Main routine loop and follows into a Reed Sensor routine loop. Here the

counter continues to add values with each pass. It remains in this loop until the reed sensor is no longer active.

When the reed sensor becomes deactivated, the reed switch counter total is divided by 60000ms, the result is the

RPM value. The reed sensor counter is set to zero. Here, the reed sensor counter starts it count with each

deactivation of the reed sensor, giving a complete time between each wheel rotation. At this point the Reed Sensor

routine is broken from its loop state and the function returns to the Main routine.

The time based functions only differ in that they are triggered at different times and they activate different sensors.

Those differences aside, they last three functions operate exactly the same way. If a time counter is reached, the

Main routine is broken and it branches out to the corresponding function.

As an example, the UltraSonic function will break the loop of the Main routine and will start if the counter is at

250ms. Here the UltraSonic function will poll the sensor for a value and store it in a variable. That variable will

have some calibration math applied to it and the resulting value will be stored in a Byte variable. That Byte variable

will then be passed to the Logging function.

In the Logging function, the Byte variable will be stored in memory address space that is determined from an

address counter. With each pass of the Logging function, the address counter is incremented. This allows the Byte

values to be stored in each successive memory address space on the EEPROM. After the value is written to

EEPROM, the address space in memory is displayed on the LCD. The function then returns back to the Main

routine loop only if memory space remains on the EEPROM. If no space remains, then the program terminates.

This example is the same from the Tilt, Speedometer, Compass, Temperature, and Voltage readings. Again, the

Main routine will continue to loop until it is ultimately broken from exhausting all of the EEPROM space. Based on

the capacity of the 512Kbit EEPROM and the frequency of the readings, the system should log date for 60 minutes.

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Hardware Schematics of Multi Sensor Data Logger

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Equipment Setup of Multi Sensor Data Logger

Placement of the equipment had its own set of challenges. The environment was wet, cold, and prone to shaking.

Outfitting a bicycle wasn’t practical for this application since time was short and materials were not available. Use

of a bike trailer proved to be the best method. Rigging the speedometer, ultrasonic sensor, and camera were the only

challenge. The remainder of the sensors were housed in the cabin of the trailer.

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Removal of the trailer seat revealed Velcro that was already in place on the bread board platform. This made it a

snap to adhere the backboard to the trailer seat housing. Side pockets inside the cabin were used to hold the external

battery packs for the GPS and camera devices.

Operational Test and Results

Weather, without fail, added a burden to the initial test run of the system. The sensor data from the ultrasonic sensor

was erroneous due to interferences from rain drops entering the senor field of view. In addition, the rear facing

camera had fogged up during the run, a result of condensation from the high humidity and low temperature

conditions.

Data gathering appears to be successful, but the representation has proved to be too difficult to process and interpret

within the time constrain of the project. Memory space had no identifier data and was comprised entirely of the

sensor data readings. This approach allowed the system to have all of the available memory dedicated to storing

sensor readings. The consequence is that each reading cannot be distinguished from each other. Albeit the results

could be processed to isolate readings from each sensor, there are anomalies that post processing will not correct.

The data graph above shows zero readings throughout the memory, these cannot be explained.

Winter 2013: Basic Stamp Multi Sensor Data Logging

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Summary

The last month of instruction for the winter quarter moved entirely away from the text and into the realm of

possibilities. This opened up an entirely different point of view of the basic stamp. The problem of multi sensor

data logging on a platform as confined presented challenges that could only be experienced this way.

The objective of the project was not successful because the data is jumbled and not discernible. Had portions of the

memory storage been used as sensor identifiers, it’s possible that some sensor data could have been represented in

the results. Clearly this is a result of time running out on the project. It was best to present the project in this

fashion than to delay, or worse abandon it all together. There are some good points worth noting and milestones

achieved during the endeavor.

The design of the project far surpassed expectations. It proved that the project could be done. The principles were

elegant and well presented. Each component became an object, and by doing so the entire project design was

manageable.

The circuit design followed a similar path, but that actual circuitry fell far short. The bread board should only be

used in a stable lab environment, such as a test bench. Placing it on a mobile platform pushed the limits of

reliability which may have led to the erroneous readings stored in memory. In addition, the hardware was

haphazardly connected in a scattered fashion which made identification of components extremely difficult. The

circuitry would have been in par with the project had it been modularized with interconnects in a stackable fashion.

The project’s use of a bicycle trailer was refreshing following the circuitry short comings. Placement and protection

of the sensors and devices was adequate. The supplemental hardware did not damage or alter the trailer and this was

ideal for this project goal.

The greatest challenge for any undertaking can be the vast quantity of hurdles. This appeared to be the theme this

project followed. Achievement was not measured in reaching the goal, but by overcoming each obstacle as it

presented itself. The project was scattered with doubt, frustration, exhaustion, disappointment, and grief. I have a

sincere relief from its completion.

It is to my dear brother Kenneth that I dedicate this project to. His untimely passing a few weeks before the

project’s completion is a bold reminder that nothing in life will go as expected. Although he would have probably

shaken his head at the sight of the equipment, he would have shared in the delight of discovery.

