
Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Typically, bicycle speedometers are live reference devices. The rider will check speed or distance as they travel. At

the completion of the ride, they may also check their maximum and average speeds along with how long the trip

was. Usually, the only long term indication of the trip is available in the odometer.

The bicycle speedometer uses a reed sensor that is triggered by the passing of a magnet. The reed sensor is in a NO

(normally open) state and will close when the magnet is close. In operation, the magnet will pass by the reed sensor

several times, creating a detectable pulse. This signal is sensed by the speedometer which measures the time

between pulses then calculates speed. In addition, the speedometer also averages the measurement, sets the

maximum measured value, and calculates distance which is stored.

The primary goal of this project is to us the Basic STAMP 2 to measure pulses from the reed sensor, calculate RPM,

and store data into external EEPROM. Aside from the logic functions of the BS2, the entire system must be able to

handle rough road travel in cold and wet conditions. The secondary goal of the project is to indicate memory use by

means of a LCD, with values displayed numerically and graphically. As an additional feature, the BS2 system will

have a RGB LED to indicate Standby, Run, and Finished states. The objectives for this project are defined as

follows:

 Detect reed sensor changes when wheel motion occurs

 Measure pulse width of sensor state changes and calculate RPM

 Store RPM values into external EEPROM

 Enclose electronics inside a weather and shock proof case

 Display memory usage on LCD in numeric value and graphically

 Indicate if system is in Standby, Running, or Finished with a RGB LED

Project History

It should be noted that this project was drawn from previous attempts to log data of a bicycle speedometer. The

overall objectives were similar, but it never accomplished its major goals. However, it was able to do the following:

 Detect reed sensor changes when wheel motion occurs

 Measure pulse width of sensor state changes and calculate RPM

The end result was a system that was tethered to a workstation via the USB cable, while data was displayed using

the DEBUG command. At most it could give indication of wheel spin decay over time. Since it offered a head start,

the code was modified some and used into the current project.

Operational Flow Chart

Figure 1-1 is a flow chart of the operational logic and control. The items displayed in blue indicate reused process

from the earlier project, while the items in black indicate developed process for this project.

When the system is powered on all declarations and initializations are done. The Green LED will blink 16 times to

indicate progress from power on to the Main Routine. The system will check if EEPROM space is available and

blink the Red LED if it has been processed. Next the system will check if the wheel time value has been set, which

results from wheel motion. By default, this value is zero and causes the system to enter in to the Start Meter

Routine.

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Figure 1-1.

Power On

Declarations and

Initialization

Blink Green LED

16 times

Main Routine

Main Routine

Space left on

EEPROM?

Blink Red LED to

indicate done

Is there wheel

time value?

Sub Main

Routine

Start Meter

Routine

Yes

Yes

No

No

Start Meter
Routine

Reed sensor &

Ref low?
Start counting

time

Yes

Reed sensor &

count hi?

No

Count time and

set reed state

Yes

Reed sensor

low & state hi?

No

C

Yes

No

A

A

B

Count idle time

Set Pause to equal time count
Calculate RPM from time count

Convert RPM to Byte value
Set 2.5 sec pause

Set time count to zero
Set reed state &idle to zero

Set Ref high

Sub Main

Routine

B

D

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Figure 1-1 continued.

C

Reed sensor

&Ref hi?
Set Ref low

Yes

Counter equal

2.5 sec?

No

Set Ref hi & set

counter to zero

Yes

Idle count more

than 2.5 sec?

No

Blink Green LED

& set idle

counter to zero

Start Meter

Routine

A

No

Yes

B

Sub Main
Routine

Blink Blue LED

Select next

EEPROM address

LCD Routine

What is current
EEPROM
address?

Output memory

space on LCD

Return

Write RPM
Byte value to

EEPROM

D

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

The Start Meter Routine will count values for idle time which is used to enter the system in standby. By default the

Reed Reference is high and Time Counter value is zero. This causes the logic system to wait for the Reed Sensor to

go high before setting the Reed Reference low. If the Reed Sensor does not go high in a 2.5 second period, the

Green LED blinks and the Idle Counter is set back to zero. This process continues until the Reed Sensor goes high.

When the wheel moves, the Reed Sensor detects the passing magnet. This causes the Reed Sensor to go high, and

the Reed Reference is set low. After a short period, the Reed Sensor goes low and this condition along with the

Reed Reference being low causes the Time Counter to start.

If the wheel magnet passes by the Reed Sensor within 2.5 seconds then the Reed Reference is set high, otherwise the

Time Counter is reset to zero and the Reed Reference is set high.

With a Reed Reference set high, a Time Counter value not zero, and the Reed Sensor back at low, the system takes

the Time Counter value and subtracts it from the 2.5 second cycle to create a Pause Counter. The counters for Time

and Pause are added to create a final pause cycle that is consistently 2.5 seconds. This is used to set the interval for

EEPROM writes to 2.5 seconds.

RPM is calculated from the Time Counter and the Byte value is derived from the RPM value. The Reed State, Idle

Counter, and Time Counter are set to zero and the Reed Reference is set high, in preparation for the next routine

cycle. The Start Meter Routine now passes the RPM Byte value on to the Sub Main Routine.

The Sub Main Routine blinks the Blue LED and addresses the next EEPROM address block to write the RPM Byte

value to. Before writing the value, the Sub Main Routine calls the LCD Routine to display memory usage.

The LCD Routine checks the value of the current EEPROM address and displays the numeric percentage of space

left on EEPROM and a graphical bar graph based on the same value. It then returns to the Sub Main Routine.

The Sub Main Routine continues with the write operation to the EEPROM address block. Once the RPM Byte

value has been entered, the Sub Main Routine returns to the Main Routine. The next available EEPROM address is

selected and the process loops through until all EEPROM address space is used.

Memory Write Code

Below is the code used to detect, display, and write RPM values to EEPROM. This code was based in large part

from the “24LC16B demo” written by Jon Williams with Parallax dated from August 18
th

, 2004.

' ===
'
' File....... 24LC16_MemoryWrite_ReedSwitch_LCDIndicator_Ver2.BS2
' Purpose.... 24LC16 data logger for bicycle reed sensor
' Edited..... Patrick Gilfeather, OrangeLine Solutions
' Original... Jon Williams, Parallax (24LC16B demo with a BS2/BS2e/BS2sx)
' E-mail..... patrick@orangelinesolutions.com
' Updated.... 20 NOV 2012
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This is a BS2 datalogger storing bicycle rpm on external EEPROM using a reed switch.
'
' Reed sensor activates logging function.
' The sensor pulse width is counted and stored in to a variable.
' This variable is converted into RPM.
' The value is finally recorded into external EEPROM in successive increments of 2.5 seconds.
' If the system looses power, logging starts at the begining of the memory address.
' If pulse width exceeds 2.5 seconds, the process is in a holding loop and no memory functions
occur.

' -----[I/O Definitions]---

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

SDA PIN 1 ' I2C serial data line IC Pin 5 `
SCL PIN 0 ' I2C serial clock line IC Pin 6
RSW PIN 3 ' Reed switch input pin
RedLED PIN 8 ' Red LED on Pin 8
GreenLED PIN 9 ' Green LED on Pin 9
BlueLED PIN 10 ' Blue LED on Pin 10
LcdPin PIN 14 ' LCD I/O pin

' -----[Constants]---

Ack CON 0 ' acknowledge bit
Nak CON 1 ' no ack bit
TCon CON 60000 ' 60 second time contant for 1 minute
TSam CON 2500 ' 2.5 time sample rate
EE24LC16 CON %1010 << 4

T9600 CON 84 ' True, 8-bits, no parity, 9600
LcdCls CON 12 ' Form feed -> clear screen
LcdOn CON 22 ' Turns display on
BckSpc CON 8 ' Backspace Cursor

' -----[Variables]---

slvAddr VAR Byte ' slave address
devNum VAR Nib ' device number (0 - 7)
addrLen VAR Nib ' 0, 1 or 2
devAddr VAR Word ' address in device

i2cData VAR Byte ' data to/from device
i2cWork VAR Byte ' work byte for TX routine
i2cAck VAR Bit ' Ack bit from device

outVal VAR Byte

TimeCounter VAR Word ' Main pulse width counter
TimePause VAR Word ' Pause variable based on pulse width which
finally equals 2.5 seconds
ByteCounter VAR Byte ' The Byte value of the RPM conversion sent to
EEPROM
ReedPoint VAR Bit ' Reed switch starting point
RefPoint VAR Bit ' Reed switch reference point

LEDBlinker VAR Nib ' LED Blinker counter
HoldStart VAR Word ' LED Blinker counter

' -----[EEPROM Data]---

' -----[Initialization]--

Check_Module:
 #IF ($STAMP >= BS2P) #THEN
 #ERROR "Use I2COUT and I2CIN!"
 #ENDIF

SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Initialize LCD
PAUSE 500

SEROUT LcdPin, T9600, [248, ' Define Custom Character 0
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '
SEROUT LcdPin, T9600, [249, ' Define Custom Character 1
 %11111, ' *****
 %11111, ' *****
 %11111, ' *****
 %11111, ' *****
 %11111, ' *****
 %11111, ' *****
 %11111, ' *****
 %11111] ' *****

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

SEROUT LcdPin, T9600, ["Memory Used"]

Setup:
 addrLen = 1 ' one word address byte

TimeCounter = 0 ' Set variable values To default
ReedPoint = 0
RefPoint = 1

LEDBlinker = 0
HoldStart = 0

FOR HoldStart = 0 TO 3

 FOR LEDBlinker = 0 TO 3 ' Blink the Green LED
when system is waiting to write
 HIGH GreenLED
 PAUSE 1
 LOW GreenLED
 PAUSE 10
 NEXT

 PAUSE 2500
 LEDBlinker = 0

NEXT

HoldStart = 0

' -----[Program Code]--

Main:
 FOR devAddr = $000 TO $7FF ' Cycle through all EEPROM addresses

 IF (TimeCounter = 0) THEN
 GOSUB StartMeter
 ENDIF

SubMain:

 FOR LEDBlinker = 0 TO 3 ' Blink the Blue LED when memory is written
 HIGH BlueLED
 PAUSE 1
 LOW BlueLED
 PAUSE 10
 NEXT
 LEDBlinker = 0

 slvAddr = EE24LC16 | (devAddr.BYTE1 << 1)
 GOSUB LCDDisplay
 outVal = ByteCounter
 i2cData = outVal
 GOSUB Write_Byte
 GOSUB I2C_Stop

 NEXT

 DO

 FOR LEDBlinker = 0 TO 3 ' Blink the Red LED when all memory is full
 HIGH RedLED
 PAUSE 1
 LOW RedLED
 PAUSE 10
 NEXT
 PAUSE 1000
 LEDBlinker = 0

 LOOP

' -----[Subroutines]---

StartMeter: ']---

HoldStart = HoldStart + 1

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

 IF (RSW = 0) AND (RefPoint = 0) THEN ' Only count if Reference
Point has been cleared, isn't by defualt.
 TimeCounter = TimeCounter + 1
 ENDIF

 IF (RSW = 1) AND (RefPoint = 0) AND (TimeCounter <> 0) THEN ' If count has occured
and Reference Point is clear then set ReedPoint.
 ReedPoint = 1
 TimeCounter = TimeCounter + 1
 ENDIF

 IF (RSW = 0) AND (ReedPoint = 1) AND (TimeCounter <> 0) THEN ' Only if full pulse
width count has occured.
 TimePause = TimeCounter
 TimeCounter = TCon / TimeCounter ' Calculate RPM
 ByteCounter = TimeCounter / 6 ' Calculate RPM to Byte
Value 0-255
 TimePause = TSam - TimePause ' Set the pause time
based on pulse width so it equals 2.5 seconds
 PAUSE TimePause
 TimeCounter = 0
 ReedPoint = 0
 RefPoint = 1
 HoldStart = 0
 GOTO SubMain ' Set Reference Point so
next start occurs at Reed Switch drop.
 ENDIF

 IF (RSW = 1) AND (RefPoint = 1) THEN ' Start on next Reed
Switch drop signal.
 RefPoint = 0
 ENDIF

 IF (TimeCounter > TSam) THEN ' Prevent TimeCounter
Overflow by reseting time counter.
 RefPoint = 1
 TimeCounter = 0
 ENDIF

 IF (RefPoint = 1) AND (TimeCounter = 0) AND (HoldStart > TSam) THEN
 FOR LEDBlinker = 0 TO 1 ' Blink the Green LED
when waiting for next sensor detection
 HIGH GreenLED
 PAUSE 1
 LOW GreenLED
 PAUSE 10
 NEXT
 LEDBlinker = 0
 HoldStart = 0
 ENDIF

 GOTO StartMeter

LCDDisplay: ']---

 IF (devAddr > 0) AND (devAddr < 128) THEN
 SEROUT LcdPin, T9600, [140, " 0%"]
 SEROUT LcdPin, T9600, [148, 0]
 ELSEIF (devAddr > 127) AND (devAddr < 256) THEN
 SEROUT LcdPin, T9600, [140, " 6%"]
 SEROUT LcdPin, T9600, [148, 1]
 ELSEIF (devAddr > 255) AND (devAddr < 384) THEN
 SEROUT LcdPin, T9600, [140, " 13%"]
 SEROUT LcdPin, T9600, [148, 1, 1]
 ELSEIF (devAddr > 383) AND (devAddr < 512) THEN
 SEROUT LcdPin, T9600, [140, " 19%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1]
 ELSEIF (devAddr > 511) AND (devAddr < 640) THEN
 SEROUT LcdPin, T9600, [140, " 25%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1]
 ELSEIF (devAddr > 639) AND (devAddr < 768) THEN
 SEROUT LcdPin, T9600, [140, " 32%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 767) AND (devAddr < 896) THEN
 SEROUT LcdPin, T9600, [140, " 38%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 895) AND (devAddr < 1024) THEN
 SEROUT LcdPin, T9600, [140, " 44%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1023) AND (devAddr < 1152) THEN

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

 SEROUT LcdPin, T9600, [140, " 50%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1151) AND (devAddr < 1280) THEN
 SEROUT LcdPin, T9600, [140, " 57%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1279) AND (devAddr < 1408) THEN
 SEROUT LcdPin, T9600, [140, " 63%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1407) AND (devAddr < 1536) THEN
 SEROUT LcdPin, T9600, [140, " 69%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1535) AND (devAddr < 1664) THEN
 SEROUT LcdPin, T9600, [140, " 75%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1663) AND (devAddr < 1792) THEN
 SEROUT LcdPin, T9600, [140, " 80%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1791) AND (devAddr < 1920) THEN
 SEROUT LcdPin, T9600, [140, " 88%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr > 1919) AND (devAddr < 2047) THEN
 SEROUT LcdPin, T9600, [140, " 94%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ELSEIF (devAddr = 2047) THEN
 SEROUT LcdPin, T9600, [140, "100%"]
 SEROUT LcdPin, T9600, [148, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ENDIF

RETURN

' -----[High Level I2C Subroutines]---------------------------------------

' Random location write
' -- pass device slave address in "slvAddr"
' -- pass address bytes (0, 1 or 2) in "addrLen"
' -- register address passed in "devAddr"
' -- data byte to be written is passed in "i2cData"

Write_Byte:
 GOSUB I2C_Start ' send Start
 i2cWork = slvAddr & %11111110 ' send slave ID
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Write_Byte ' wait until not busy
 IF (addrLen > 0) THEN
 IF (addrLen = 2) THEN
 i2cWork = devAddr.BYTE1 ' send word address (1)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = devAddr.BYTE0 ' send word address (0)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = i2cData ' send data
 GOSUB I2C_TX_Byte
 GOSUB I2C_Stop
 RETURN

' Random location read
' -- pass device slave address in "slvAddr"
' -- pass address bytes (0, 1 or 2) in "addrLen"
' -- register address passed in "devAddr"
' -- data byte read is returned in "i2cData"

Read_Byte:
 GOSUB I2C_Start ' send Start
 IF (addrLen > 0) THEN
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Read_Byte ' wait until not busy
 IF (addrLen = 2) THEN
 i2cWork = devAddr.BYTE1 ' send word address (1)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = devAddr.BYTE0 ' send word address (0)
 GOSUB I2C_TX_Byte
 GOSUB I2C_Start
 ENDIF
 i2cWork = slvAddr | %00000001 ' send slave ID (read)
 GOSUB I2C_TX_Byte
 GOSUB I2C_RX_Byte_Nak

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

 GOSUB I2C_Stop
 i2cData = i2cWork
 RETURN

' -----[Low Level I2C Subroutines]--

' *** Start Sequence ***

I2C_Start: ' I2C start bit sequence
 INPUT SDA
 INPUT SCL
 LOW SDA

Clock_Hold:
 DO : LOOP UNTIL (SCL = 1) ' wait for clock release
 RETURN

' *** Transmit Byte ***

I2C_TX_Byte:
 SHIFTOUT SDA, SCL, MSBFIRST, [i2cWork\8] ' send byte to device
 SHIFTIN SDA, SCL, MSBPRE, [i2cAck\1] ' get acknowledge bit
 RETURN

' *** Receive Byte ***

I2C_RX_Byte_Nak:
 i2cAck = Nak ' no Ack = high
 GOTO I2C_RX

I2C_RX_Byte:
 i2cAck = Ack ' Ack = low

I2C_RX:
 SHIFTIN SDA, SCL, MSBPRE, [i2cWork\8] ' get byte from device
 SHIFTOUT SDA, SCL, LSBFIRST, [i2cAck\1] ' send ack or nak
 RETURN

' *** Stop Sequence ***

I2C_Stop: ' I2C stop bit sequence
 LOW SDA
 INPUT SCL
 INPUT SDA
 RETURN

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Hardware Schematics of Bicycle Speedometer SCADA

Bench Testing of Bicycle Speedometer SCADA

Fall 2012: Bicycle Speedometer SCADA using the Basic Stamp 2

Author: Patrick Gilfeather / OrangeLine Solutions / Seattle, WA

Final Installation and Data of Bicycle Speedometer SCADA

Summary and Conclusion

The project was successful in accomplishing the objectives defined. The data now can be process for further

analysis outside of the system, which adds value to the project by offering a result far beyond its scope. Although

the project achieved its objectives, there are some considerable discrepancies that should be pointed out.

The breadboard had a bad wiring connection for the reed sensor. The negative terminal of the reed sensor did not

pass through the 1K ohm resistor as defined in the schematic, but was a short to ground. This caused the drain

voltage to drop directly to ground, which could have damaged the board. This may explain some the RPM reading

drops noticed in the output.

Also, the wiring to the LCD was not stable. Upon completion of the ride, the display was not readable. The ground

pin had come loose from the connector which caused this to occur.

Aside from these pitfalls, the project was rewarding because it demonstrated the extended usefulness of the Basic

Stamp. This was clearly evident from the expanded storage capacity, but also from the use of the I2C protocol.

